Support Effects in the Formation of Methanol from Carbon Dioxide and Hydrogen over Rhenium Catalysts

Tokio lizuka, Masanao Kojima, and Kozo Tanabe

Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060, Japan

In the hydrogenation of carbon dioxide over supported Re catalysts the selectivity for methanol formation was high over Re–ZrO $_2$ and Re–Nb $_2$ O $_5$ under moderate conditions (10 atm, 160—220 °C).

The hydrogenation of CO has been extensively investigated for the production of hydrocarbons and alcohols.¹ In comparison, however, there has been little study of CO_2 hydrogenation reactions.² There have been several attempts to make methanol from $CO_2 + H_2$, but only a few catalysts (e.g., supported CuO^3 or Pd^4) are known to form methanol in CO_2 hydrogenation.

We report herein the effectiveness of Re-ZrO₂ and Re-

Nb₂O₅ for the production of methanol from CO₂ and H₂. Table 1 summarizes the results obtained over Re–ZrO₂, Re–Nb₂O₅, Re–SiO₂, Re–MgO, and Re–Zeolon. The catalysts were prepared by a conventional impregnation method to obtain an Re content of 7 wt %. The reactions were carried out using a flow reactor under 10 atm. Re–ZrO₂ showed excellent reactivity and selectivity for the formation of methanol at 160 °C. Re–Nb₂O₅ showed selectivity for methanol (>50%)

Table 1. Hydrogenation of CO₂ over supported rhenium catalysts [CO₂(or CO) flow rate, 45 mmol h⁻¹].

	Metal surface area ^a /m ² g ⁻¹	Reaction temp/°C	Rate ^b of alcohol c + hydrocarbon formation	Selectivity/mol % 8							Rateb of CO
Catalyst				CH ₄	МеОН	Me ₂ O	EtOH	C ₂	C ₃	C ₄₊	formation
Re-ZrO ₂	4.1 $(CO + H_2)$	160 220 220	9.95 119.82 6.66	25.5 68.5 30.7	73.2 25.6 53.5		0.2 4.2	0.9 3.5 6.1	0.4 1.5 3.8	trace 0.7 1.7	11.41 163.96 7.30°
Re-Nb ₂ O ₅	1.1	220 260	5.04 20.34	37.6 74.0	52.0 17.4	8.7 5.0		1.3 2.7	0.4 0.7	0.2	21.10 90.68
Re-MgO	0.7	260 298	4.50 22.07	80.6 91.2	17.5 5.3	_		1.9 2.9	trace 0.6	trace	23.97 141.55
Re-SiO ₂	1.6	180 220	10.40	74.7	22.6	_		1.9 3.3	0.7	0.1 0.2	11.46 88.10
Re-Zeolon	2.9	220	68.57 19.98	88.8 75.7	6.6 18.2	0.1		4.0	1.0 1.4	0.2	68.10

^a Calculated from the amount of H₂ adsorbed. ^b Rate \times 10⁻² mmol g-cat. ⁻¹. ^c Rate of CO₂ formation.

and dimethyl ether (ca. 9%), but its activity was lower than that of Re–ZrO₂. Nb₂O₅ has surface acidic character and catalyses the dehydration of methanol to dimethyl ether,⁵ which would account for the formation of dimethyl ether over Re–Nb₂O₅. Basic supports are reported to favour the production of methanol,⁴ and in this work, the latter did not predominate on the other acidic supports, SiO₂ and Zeolon. The role of Nb₂O₅ as a support, then, is peculiar and interesting. Rhenium supported on MgO which is a typical basic oxide showed very poor activity; a higher reaction temperature was required and consequently the selectivity for methanol was not high.

Conversion of CO_2 into methane predominated in initial stages of the reaction, but the formation of methanol gradually increased and reached a steady state in 1-2 h for all the catalysts. This suggests the gradual change of surface active sites to favour methanol formation.

In the comparable reaction of CO over Re-ZrO₂, CO

exhibited almost no reactivity at 160 °C and even at 220 °C, the CO reaction was less active and selective compared to that of CO_2 at 160 °C. Our results confirm these hydrogenations of CO_2 as a method for producing methanol with an activity comparable to those using Cu and Zn catalysts.³

Received, 20th January 1983; Com. 095

References

- 1 C. K. Rofer-DePoorter, Chem. Rev., 1981, 81, 447.
- 2 V. M. Vlasenco and G. E. Yuzefovich, Russ. Chem. Rev., 1969, 38, 728.
- 3 R. Bardet, J. Cazat, and Y. Trambouze, J. Chim. Phys., 1981, 78, 135.
- 4 E. Ramaroson, R. Kieffer, and A. Kienneman, J. Chem. Soc., Chem. Commun., 1982, 645.
- 5 T. Iizuka, K. Ogasawara, and K. Tanabe, unpublished work.